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Themagnetocaloric effect (MCE), found byWarburg,[1] provides a
unique way for realizing refrigeration from ultralow tempera-
tures to room temperature. With an increase of applied field, the
magnetic entropy decreases and heat is emitted from the
magnetic system to the environment in an isothermal process;
with a decrease of applied field, the magnetic entropy increases
and heat is absorbed from the lattice system to the magnetic
system in an adiabatic process. Both the large, isothermal entropy
change and the adiabatic temperature change characterize the
prominent MCE. Over the past few years, the MCE and magnetic
refrigeration materials have been investigated extensively,[2–13]

and several kinds of magnetic-refrigerant prototype instruments
have been implemented experimentally.[14–16] However, the
origin and evaluation method of the MCE are still in dispute.
Here, we will start from the thermodynamic deduction, then
combine magnetic and caloric measurements to study the MCE
in the vicinity of the first-order phase transition.

Usually, the MCE can be observed through magnetic or
calorimetric measurements. The method of magnetic measure-
ments based on the Maxwell relation is accepted widely, although
it is still controversial. The bone of contention seems to be
whether the rate of change of the magnetization with
temperature, @M/@T, is finite. Giguère et al.[17] and Földeàki
et al.[18] pointed out that as @M/@T is infinite during a first-order
phase transition, the Maxwell relation is not suitable for
calculating the entropy change in such a case. On the contrary,
Gschneidner et al.,[19] Sun et al.[20] andWada et al.[21] claimed that
@M/@T is finite in real materials and the Maxwell relation is
applicable. Currently, the Maxwell relation is widely used to
calculate the MCE. Recent advances in MCE research of MnAs[11]

and Mn(1–x)FexAs
[12] have aroused one to reconsider the origin

and the evaluation method of the MCE in the case of a first-order
phase transition. Entropy changes, observed in MnAs (under a
static pressure)[11] and Mn(1–x)FexAs (at ambient pressure)[12] are
much larger than the theoretical limitations, and are referred to as
the colossal MCE. It is worth noting that sharp ‘‘spikes’’ appear in
the entropy-change curves in many reports on giant or colossal
MCEs, whether the measurements are under a strong or weak
applied field.[2–4,6,11,12]

One possible origin for the ‘‘spikes’’ may be the coexistence of
paramagnetic (PM) and ferromagnetic (FM) phases.[22] We do not
think that the relationship between the MCE and a ‘‘spike’’ has
been entirely established yet. Therefore, the thermodynamics
relations must be carefully analyzed so as to clarify the problem
thoroughly. We detail the process of deducing the Maxwell
relation and its necessary conditions, and then apply it to
the discussion of LaFe11.6Si1.4, La0.8Nd0.2Fe11.5Si1.5, and
Ni43Mn46Sn11 compounds.

Deducing the thermodynamics relations are important and
helpful for an understanding of the origin of the ‘‘spikes’’ in the
entropy-change curves. For a reversible process, the internal
energy of a paramagnet is given by Equation (1):

dUðM;V ; SÞ ¼ HdM � PdV þ TdS (1)

In Equation (1), U is the internal energy, M is the
magnetization, V is the volume, S is the entropy, H is the
applied field, P is the pressure, and T is the temperature. After a
Legendre transformation, Equation (1) takes the form described
in Equation (2):

G ¼ U �MH þ PV � TS (2)

In Equation (2), G is the Gibbs free enthalpy. If the
second-order mixed partial derivative of G is continuous, it is
easy to obtain the Maxwell relation (Equation (3)):

@V
@H

� �
P;T

¼ � @M
@P

� �
H;T

@V
@T

� �
P;H

¼ � @S
@P

� �
H;T

@M
@T

� �
P;H

¼ @S
@H

� �
P;T

8>>>><
>>>>:

(3)

If the magnetic system can be regarded as being independent,
the magnetic entropy change under an applied field can be
expressed as shown in Equation (4):

DS¼ SðH1;TÞ � SðH0;TÞ ¼
Z H1

H0

@M
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� �
H

dH
(4)
bH & Co. KGaA, Weinheim 693



C
O
M

M
U
N
IC

A
T
IO

N

www.advmat.de

694
Equation (4) is widely used to calculate the entropy change. In
fact, Equation (4) can be integrated numerically, and presented in
the following form (Equation (5)):

� DS ¼
X
i

1

Tiþ1 � Ti
ðMi �Miþ1ÞDHi (5)

It is well known that first-order magnetic phase transitions are
often accompanied by volume deformation. It is an indication
that strong couplings exist, such as the magnetoelastic coupling,
so the results calculated from Equation (4) and (5) give the total
entropy change of the system (see to Equation (1–3)).

According to thermodynamics, it is easy to attain the
relationship between the entropy and the heat capacity as
expressed below in Equation (6):

DSðTÞ ¼
Z T

0

CHðTÞ � C0ðTÞ
T

dT (6)

Equation (6) is used to calculate theMCE through heat-capacity
measurements. The result calculated from Equation (6) is the
total entropy change in real materials, and is the same as that
calculated from Equation (4) and (5).

Now, we would like to discuss the entropy change in
LaFe11.6Si1.4, La0.8Nd0.2Fe11.5Si1.5 and Ni43Mn46Sn11. For the
purpose of the MCE estimation, we have measured the
isothermal magnetization curves and calculated the entropy
change from Equation (5). The sketch calculation is shown in
Scheme 1, in which T1, T2 and T3 are temperatures, and S1, S2

and S3 are the areas bounded by the curves at T1, T2 and T3. The
entropy change at a temperature of (T1þT2)/2 is given by
Equation (7):

DS
T1 þ T2

2

� �
¼ S1

T2 � T1

(7)

It is clear that the magnitude of DS corresponds to the area, S.
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Scheme 1. Schematic diagram of the isothermal magnetizations; T1, T2
and T3 are the temperatures. The shadowed areasSi (i¼ 1, 2, 3) are used to
calculate the entropy change by using theMaxwell relation.H is the applied
field. The inset shows the entropy plotted against temperature when TC is
equal to (T2þ T3)/2.
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Isothermal magnetization curves for LaFe11.6Si1.4 measured
from 180 to 220K, with the applied field increasing from 0 to 5 T,
are shown in Figure 1a. Si (i¼ 1, 2, ..., 10) denotes the area
bounded by two adjacent M–H curves. The entropy changes
calculated from the Maxwell relation are shown in Figure 1b. The
peak value was 37 J K�1 kg�1 at 0–5 T. The corresponding results
for La0.8Nd0.2Fe11.5Si1.5 are shown in Figure 1c and 1d. The peak
value was 53 J K�1 kg�1 at 0–5 T. Nd doping causes the Curie
temperature to decrease. The ‘‘spikes’’ are prominent. Note that
no ‘‘spikes’’ are observed at all on entropy-change curves
determined by means of the heat capacity method.[22,23] The
coexistence of a FM and a PM phase, represented by the blue line
in Figure 1c, was once considered to be responsible for
the appearance of ‘‘spikes’’.[22] In fact, the physical picture
behind the sharp ‘‘spikes’’ has not yet been fully obtained.
According to Equation (7), the entropy change is in one-to-one
correspondence with the area. The red arrows show these
correspondences. It is clear that the ‘‘spike’’ originates from the
S that is anomalously larger than any other Si (see S1 in Fig. 1a
and S2 in Fig. 1c). This behavior can be seen in most of the giant
or colossal MCE materials, although it has not received much
attention.

Considering Equation (7), if the applied field tends to zero, the
area, S, should be close to zero. However, the DS will maintain a
finite value at TC¼ (T2þT3)/2 for an ideal first-order phase
transition, which conflicts with the result from Equation (7) (see
the inset in Scheme 1). In fact, DS does not correspond to S well
before the applied field is saturated. TheMaxwell relationmay not
hold true in this case, due in part to the magnetic domain. Before
becoming saturated, the applied field drives both magnetic
moments and magnetic domains toward the applied field. For
materials in the FM state, though themagnetizations are changed
rapidly with increasing applied field, the magnetic entropies are
not changed much because the macroscopic magnetization does
not represent the magnetic order directly. As a result, S1 in
Figure 1a may be anomalously larger than any other Si, which
leads to the appearance of the ‘‘spike’’ (the same as S2 in Fig. 1c).
In contrast, when FM materials are under a saturated field, the
applied field can drive the magnetic moments directly, and the
domain effect is approximately negligible. Thus, the MCE
estimated from the Maxwell relation is true in this case. It is easy
to draw a conclusion that the Maxwell relation is applicable when
the magnetic moments are freely manipulated by the applied
field. This means that theMaxwell relation can be used in the case
of a PM or FM state under a saturated field.

The entropy change determined using the heat capacity
method is convincing. The heat capacity of the LaFe11.6Si1.4
compound has been plotted against temperature and is shown in
Figure 2a. The entropy changes under different saturated fields
determined by the heat capacity and the Maxwell relation are
shown in Figure 2b. The heat capacity and entropy changes of
La0.8Nd0.2Fe11.5Si1.5 are shown in Figure 2c and 2d, respectively. It
is clear that the entropy change determined by using the
heat capacity method dovetails with that from the Maxwell
relation. The above-mentioned discussion can win complete
support.

The discussions can be generalized to a Heusler-type
NiMnSn alloy,[24–26] which is helpful to uncover the origin of
the MCE in the NiMnSn alloy. Different to LaFe11.6Si1.4 and
bH & Co. KGaA, Weinheim Adv. Mater. 2009, 21, 693–696
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Figure 1. a) Isothermal magnetizations of LaFe11.6Si1.4 compound versus applied field, where
the magnetizations were measured at increasing magnetic field. b) Temperature dependence
of total entropy changes under different applied fields. c) and d) The corresponding results for
La0.8Nd0.2Fe11.5Si1.5 compound. The red arrows indicate the correspondence between the
area, Si, and the entropy change; the blue line denotes FM and PM phase coexistence.
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Figure 2. a) The heat capacity of LaFe11.6Si1.4 as a function of temperature and magnetic field
from 2 to 242K. b) The temperature dependence of the entropy changes of LaFe11.6Si1.4
calculated from the heat capacity (squares) and Maxwell relation (circles). c) and d) The
corresponding results for La0.8Nd0.2Fe11.5Si1.5. The temperature interval of the heat capacity is
1 K in the vicinity of phase transition.
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La0.8Nd0.2Fe11.5Si1.5, the giant MCE of the
Ni43Mn46Sn11 alloy originates from amartensitic
phase transition. Previous reports[24,26] have
shown that the giant inverse MCE is observed,
due to modifications in the magnetic exchange
interaction during the martensitic phase transi-
tion. Figure 3a shows the isothermal magnetiza-
tion curves obtained between 184 and 200K,
where Si (i¼ 1, 2, 3, 4) denotes the area bounded
by two adjacentM–H curves. Figure 3b shows the
entropy changes calculated from the Maxwell
relation. The giant inverse MCE appears and the
entropy-change peak reaches 78 J K�1 kg�1 for
DH¼ 5 T. Figure 3c shows the heat capacity of
the Ni43Mn46Sn11 alloy. The martensitic phase-
transition temperature decreases with the
increase of applied field. The entropy changes
determined by the heat capacity and the Maxwell
relation are shown in Figure 3d. The entropy
change under a saturated applied field, deter-
mined by the heat capacity and the Maxwell
relation shows a great discrepancy. The entropy
change determined from the heat capacity is
2.6 J K�1 kg�1, whereas it is 46.9 J K�1 kg�1

determined from the Maxwell relation. The
reason may be that the case of the Ni43Mn46Sn11
alloy does not match the requirements for
employing the Maxwell relation, whether the
applied field is saturated or not. It should not be
neglected that the change of macroscopic
magnetization does not exactly reflect the change
of magnetic order in the vicinity of the
martensitic phase transition. In other words,
the activities of the magnetic moments are not
directly manipulated by the applied field. The
reasons may be the magnetic domain effect and
the low-magnetization martensitic phase. If
these details are ignored, misjudgment will be
inevitable. Moreover, the discrepancy of the
entropy change between themagnetic and caloric
measurements may indicate that the magnetic
state of martensitic phase is not paramagnetic.

Even now some fundamental problems in
MCE research may still be unknown, though a
large number of studies on the MCE and MCE
materials have been carried out. LaFe11.6Si1.4,
La0.8Nd0.2Fe11.5Si1.5 and Ni43Mn46Sn11 com-
pounds have been systematically studied to
demonstrate the proper ways to evaluate the
MCE and clarify the truth in MCE research. The
magnetic domains and the discrepancy between
the macroscopic magnetization and magnetic
order are ignored, which leads to having to
revaluate the results determined by magnetic
measurements in the vicinity of a first-order
phase transition. The anomalous enlargement in
the area bounded by two adjacentM–H curves is,
in part, responsible for the appearance of a
‘‘spike’’ on the DS–T curve. According to
einheim 695
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Figure 3. a) Isothermal magnetization of Ni43Mn46Sn11 versus applied field, where the
magnetizations are measured at an increasing magnetic field. b) The temperature dependence
of the total entropy changes of Ni43Mn46Sn11 under different applied fields. The red arrows
indicate the correspondence between the areas, Si, and the entropy change. c) The heat
capacity as a function of temperature and magnetic field from 2 to 252 K. d) The temperature
dependence of the entropy changes, calculated from the heat capacity (red symbols) and the
Maxwell relation (black symbols). The inset shows the entropy change determined by heat
capacity alone. The temperature interval of the heat capacity is 1 K in the vicinity of the phase
transition.
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thermodynamics, the entropy changes determined by the
Maxwell relation are creditable when materials are in the PM
or FM state under a saturated applied field. The case of a
martensitic phase transition in Ni43Mn46Sn11 alloy does not meet
the necessary condition for the Maxwell relation, being
responsible for the great discrepancy in the entropy change
between the magnetic and heat-capacity measurements. This
discussion can be easily generalized to other colossal or giant
MCE materials with a first-order phase transition.
Experimental

Ingots were prepared by arc melting the pure metals under an argon
atmosphere in a water-cooled copper crucible. The samples were sealed in
quartz tubes at high vacuum. LaFe11.6Si1.4 and La0.8Nd0.2Fe11.5Si1.5
samples were annealed at 1343 K for 58 d, and then quenched in liquid
nitrogen. The Ni43Mn46Sn11 sample was annealed at 1173 K for 24 h, and
then quenched in ice-water. The crystal structures were confirmed by X-ray
powder diffraction studies at room temperature. Magnetization measure-
ments were carried out using a superconducting quantum interference
device (SQUID) magnetometer and physical properties measurement
system (PPMS) from Quantum Design Inc with zero-field-cooling and
fixed-point model in fields up to 5 T. Heat-capacity measurements were
carried out using PPMS.
� 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We
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